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Background 

 

Suicide is a major societal problem. In Australia, there were 3,144 deaths by suicide in 2021 with 

suicide being the leading cause of death amongst young people (18-24 years).1 The impact of 

suicides is particularly devastating for families, friends and communities when they occur in clusters. 

A suicide cluster is defined as a group of suicides that occur closer together in time and space than 

expected given the underlying suicide rate.2 Clusters are of significant concern: (a) because they 

typically occur among young people and Indigenous people, groups in which news of a suicide can 

spread rapidly and widely; and (b) due to the potential for each suicide within a cluster to lead to 

further suicides in the community.2,3  

 

There is strong evidence supporting the safety and effectiveness of many suicide prevention 

interventions,4 including interventions for responding to suicide clusters.5-7 But the potential for these 

interventions to save lives and avert the consequences of suicide for communities is limited because 

our current monitoring and dissemination methods are not nimble enough to identify when suicides 

clusters are forming in real time.8 This stems from two key problems.  

 

The first problem is a time lag in the reporting of suicides. The main data source that we, and other 

Australian researchers, have used previously to detect suicide clusters is the National Coronial 

Information System (NCIS). However, relying on closed cases (cases where a coroner has made a 

determination) means there is typically a delay of 12-18 months between the death of a person by 

suicide and the data becoming available in NCIS. This severely hampers the ability of current cluster 

detection methods to find emerging clusters and means any response is delivered too late to be 

useful. 
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The second problem is that the location of suicides and the location of the deceased residential 

address are usually reported at a relatively high level, such as by postcode or local government area. 

This creates several follow-on issues that limit the utility of the data. First, high-level aggregations 

are often too imprecise to detect the true location of clusters and inform targeted prevention efforts. 

Second, upon identifying any clusters, the precise locations of death remain unknown, offering little 

information to those developing prevention and postvention strategies. Finally, methods of tracking 

the number of suicides over time often focus on a specific geographic boundary, but since related 

suicides can occur outside a boundary, the full picture may not be visible to those responding to 

clusters. 

 

The Coroners Court of Victoria (CCV) has been aware of these issues in preparing their regular 

reports for the Suicide Prevention and Response Office in the Victorian Department of Health. In 

early 2021, CCV approached us to see if it was possible to use their Victorian Suicide Register 

(VSR)9 to overcome the problems of timeliness and data aggregation to detect suicide clusters in real 

time. Together, we proposed a project to the Australian Institute of Health and Welfare (AIHW) that 

sought to test the feasibility of using this data to undertake regular monitoring of suicide clusters in 

Victoria. This report summarises that work. 

 

Project aims 

Building on the work of CCV in developing a real-time suicide register and our previous work on 

suicide cluster detection using various data sources, our overarching aim was to test the feasibility of 

using the VSR to undertake regular monitoring of suicide clusters in Victoria. The key research 

question was: Can modern cluster detection methods be used on real-time data with precise 

geocoordinates to monitor the emergence of suicide clusters? To answer this question, the project 

was organised in 6 stages. These were: 
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1. Obtain ethical approval. 

2. Develop a secure data platform for storing and analysing the VSR data. 

3. Obtain additional data on the population sizes at various geographic levels (mesh blocks, 

statistical area 1, etc), shapefiles for these same geographic areas, undertake data cleaning 

and data alignment. 

4. Undertake space-time cluster detection analysis to identify reference clusters. 

5. Simulate real-time cluster detection analysis. 

6. Report on the results. 

In summarising our research, we have grouped stages 1 to 3 together and presented stages 4 and 5 in 

their own sections. 

 

Stages 1 to 3: General methods 

Ethical approval, agreement to share data, data storage and security 

The University of Melbourne (UoM) Ethics Committee approved the project on 10th August 2021 

(reference: 2021-21928-20627-3). Judge John Cain (the State Coroner) signed an order for the 

release of VSR data for the purpose of this project on 5th October 2021 and an information sharing 

agreement between the Court Services Victoria (acting on behalf of CCV) and the University of 

Melbourne was executed on the 28th September 2021.  

 

In consultation with the UoM’s Research Computing Services, a highly secure system for data 

storage and analysis was established for us that (a) housed the data safely; (b) met the intensive 

computer requirements for cluster detection analysis and (c) had potential for long-term use. Under 

this arrangement (available for the life of the project), raw data from the CCV was transferred to the 

research data management platform Mediaflux, located in the UoM's secure data centre. Named 

UoM Researchers (Leo Roberts, Angela Clapperton and Matthew Spittal) can access the data from 
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Mediaflux via two virtual desktop platforms, both suitable for further storage and analysis. These are 

(1) Researcher Desktop (which offers Linux and Windows interfaces) and (2) Research Server 

(which offers more computing power on a Linux interface). To enter either virtual environment, 

named researchers must first use their UoM login credentials (with two factor authentication) to enter 

the university network when on campus or enter the university's Virtual Private Network when off 

campus.  

 

Suicide Data 

CCV provided us with two data extracts from the VSR for the purpose of this study. Both datasets 

contained the following variables: a case number identifier, date of suicide, age, sex, incident 

location latitude, incident location longitude, incident suburb, incident location description (e.g., 

usual residence or non-residential location), residential location latitude, residential location 

longitude, residential suburb and the method of suicide. The first dataset (provided January 2022) 

contained this information for all Victorian suicides from January 1, 2008, to December 31, 2021. 

The second dataset (provided July 2022) contained updated information for suicide from January 1, 

2008, to June 30, 2022, and is the basis of all analyses reported here. This second dataset held 

information for 9155 deaths, although 208 deaths had no associated residential address (essential for 

our chosen analysis – see below) and were excluded from all analyses. The resultant file had 

information for 8957 deaths (2252 females, 6705 males, mean age = 45 years). Residential latitude 

and longitude were used exclusively for cluster detection analysis, as opposed to incident latitude 

and longitude. This choice reflected the goal to use real-time data to identify communities in crisis, 

rather than to identify locations where numerous suicides occurred (sometimes called suicide 

hotspots).  
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Additional data 

We explored the feasibility of identifying clusters at three relatively precise Australian Bureau of 

Statistics (ABS) geographic classification levels: mesh blocks (MB; usually 30 to 60 dwellings), 

statistical area level 1 (SA1, average population of around 400 people) and statistical area level 2 

(SA2, average population of around 10,000 people). Searching for clusters at these three levels 

constrains any identified clusters to be either a complete single geography (e.g., a single SA2) or a 

collection of neighbouring geographies (e.g., a group of contiguous SA2s), depending on the size of 

the cluster. Under this approach, identified clusters could never, for example, cut across an SA2. 

Detecting MB-, SA1- and SA2-level clusters requires both population data for each area and 

corresponding shapefiles that specify the geographical location of each area (i.e., information about 

the location and population is needed for every relevant MB, SA1 and SA2). Accordingly, usual 

resident populations from the 2016 census for all Victorian MBs, SA1s and SA2s were extracted 

from ABS table builder tool. ABS shapefiles (2016 census) for the same geographies were 

downloaded from the ABS website. We used 2016 Census data because this snapshot approximated 

the mid-point of the suicide data and therefore was the best estimate of population and area location 

available.   

 

Cluster detection analysis 

Cluster detection analysis was performed using the opensource software, SaTScan, which detects 

unexpectedly large groups of observations using a method called the scan statistic. The scan statistic 

investigates the presence of clusters by exhaustively moving a window of variable dimensions across 

a geographic space, while recording, for each variation of the window, the observed and expected 

number of events inside and outside the window. Depending on the nature of analysis, each window 

can capture observed and expected counts in an amount of time (a temporal analysis), in a spatial 

area (a spatial analysis) or both (a space-time analysis). While spatial only analyses were originally 
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considered, space-time analyses became our sole focus, with the goal of identifying both the location 

and duration of clusters. Space-time cluster exploration was undertaken using a retrospective discrete 

Poission model (one of several options in SaTScan), recommended in situations where case numbers 

and a background population at risk are available (e.g., census data). Under the discrete Poisson 

model, the number of cases in each location is Poisson-distributed, according to the population at 

risk. Given the null hypothesis of equal disease risk, the expected number of cases in each area is 

proportional to the person-years in that area (i.e., the number of people in the area multiplied by the 

number of years at risk). 

 

SaTScan’s method of investigating the presence of a space-time cluster can be visualised as moving 

a virtual cylinder across a map where the base of the cylinder represents the area under investigation 

and the height corresponds to time. The height and radius of the cylinder is varied within 

prespecified limits, gradually increasing from the specified minimum dimensions until maximum 

limits are reached. In our case, SaTScan calculated, for each cylinder instance, the observed and 

expected number of suicides inside the cylinder and the observed and expected numbers of suicides 

outside the cylinder. The expected number of suicides was determined by scaling the number of 

suicides per person-year across the whole dataset to the much smaller number of person-years inside 

the cylinder. 

 

Using the observed and expected metrics, SaTScan calculates a log likelihood ratio (the test statistic) 

that measures the risk of suicide inside the cylinder relative to the outside, which is then maximised 

across all cylinders. The cylinder with the maximum test statistic is the candidate cluster least likely 

to have occurred by chance (i.e., the most likely cluster). Monte Carlo simulation (the default 

SaTScan method) is then used to test the significance of the most likely cluster and other high-

likelihood clusters, with the following two steps. First, the maximum test statistic is determined from 
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999 randomly generated datasets (drawn from across the entire space-time landscape provided to 

SaTScan). Second, the original test statistic of the candidate cluster is ranked within the full set of 

1000 maximum test-statistics, with the p-value corresponding to the rank (e.g., p = 50/1000 = 0.05). 

Technical description of space-time cluster detection using the scan statistic can be found in the 

SaTScan user manual10.  

 

Given our long-term goal of developing a suicide cluster surveillance system, it was advantageous to 

establish a process whereby SaTScan could be run remotely and automatically from a more generic 

statistical software. This was achieved using the opensource statistical software, R, via the rsatscan 

package11 specifically written to execute SaTScan analyses inside R. Following the initial setup 

work, this approach allowed us to perform all data cleaning, data organisation, analysis and reporting 

inside the same software and allowed automation of large parts of the process from data-cleaning to 

mapping/plotting.  

 

SaTScan file setup 

To run the retrospective space-time discrete Poisson model, three files are needed: a case file, a 

coordinates file and a population file. The case file must contain the number of observed events at a 

given location within a given time period. For us, this meant aggregating the number of suicides by 

geography (MB, SA1 or SA2) and time period (day, month or year). As an example, the resultant 

case file might show the number of suicides in each Victorian SA2 for each month, for all the 

SA2/month combinations where any suicides occurred. To determine the geography associated with 

each suicide, MB, SA1 and SA2 shape files were linked to the residential latitude and longitude of 

each event with a spatial join via the R package, ‘sf’12. Essentially, this process determined which 

MB, SA1 and SA2 polygon surrounded each residential suicide location. Shape files and residential 
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coordinates were standardised using the widely used WGS 84 latitude/longitude system (EPSG: 

4326). 

 

The coordinates file requires a latitude and longitude location for each geographical area (e.g., a 

single position for each SA2). For SA2s and SA1s, we defined this location as the population-

weighted centroid, where the populations of constituent MBs were used as the weighting factor. The 

population weighting process involves determining the geometric centre of each constituent MB (i.e., 

the latitude and longitude of the midpoint of each polygon), then, for all SA2s and SA1s, calculating 

a population-weighted average of these latitude and longitude values using MB populations. For the 

MB level analyses, the geographic location assigned to each MB was the geometric centroid (rather 

than the population-weighted centroid), since populations are not available below the MB level. In 

the case of the discrete Poisson model, the choice between using population weighted centroids or 

geometric centroids as reference locations had no meaningful impact on the findings (only the 

number of cases within each geographical area can affect that) but does offer some advantages if 

mapping cluster circles. 

 

The population file requires a population value for each area. As mentioned, we used ABS usual 

resident populations from the 2016 Census as the estimate for each MB, SA1 and SA2 in Victoria.  

 

Stage 4: Reference Cluster Detection 

Our first analytic step was to apply the scan statistic to the full dataset provided by the CCV (January 

2008 to July 2022) and search for historical space-time clusters (referred to as reference clusters). In 

doing so, we aimed to assess if the scan statistic was able to uncover any statistically significant 

clusters (its first test), and if so, whether or not the identified clusters made sense to those at CCV 



 10 

who regularly monitor suicide events in the state (its second test). Conducting this initial analysis 

also allowed us to refine our understanding and specification of the SaTScan tool.  

 

Method – Reference Cluster Detection 

Before running any SaTScan model, several parameters that affect that computation of the scan 

statistic must first be specified. Table 1 outlines and explains the key parameters, the selections we 

made, and the associated reasoning. Notably, we deliberately varied two parameters in Table 1 

(maximum cluster radius and maximum cluster duration), rather than choosing a single option. In 

practice, this meant repeating the MB, SA1 and SA2 models several times, adjusting the relevant 

parameters on each occasion. We adopted this computationally expensive approach with the 

ambition of converging on significant clusters with several models (i.e., robust clusters), rather than 

with an isolated model. Varying both parameters also clarified their impact on cluster detection.  

 

Modelling was separately conducted using (a) suicides counts of people of all ages (the all-ages 

analysis), with the whole population used to determine expected counts and (b) using suicide counts 

of people under 25 years (the under 25 analysis), with the under 25 population used to determine 

expected counts. Given the additional variation of geographical level (3 levels), maximum cluster 

radius (4 levels) and maximum cluster duration (3 levels), 72 models were run in total (36 for all 

ages; 36 for under 25-year-olds). We classified clusters as possible clusters if their p value was ≤ 

0.01. We implemented this liberal alpha value with the view that occasional false positives would 

have little downside in a suicide surveillance system (e.g., the ramification might be additional file 

review in the first instance). 
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Table 1. SaTScan parameters and reasons for selection 

Parameter Parameter explanation Option used Reason 

Window shape SaTScan can progressively scan 

circular or ellipsoid windows. 

Ellipsoid windows can be helpful 

when exploring clusters that are 

unlikely to be captured by a circle 

(e.g., along coastlines or other 

boundaries) and are potentially well 

suited to certain hotspot (incident) 

analyses. 

Circular windows Since suicide residences were distributed 

across the state and do not reliably sit 

alongside borders, circle clusters were 

considered a good default option. Future 

research could consider the potential 

benefits of using ellipsoid windows.  

 

Note that by running SaTScan models at 

the MB, SA1 or SA2 level, clusters are 

forced to the shape of those geographies 

and are not actually circular. SaTScan still 

theoretically explores circular windows, 

but in effect, if the circle captures any part 

of a geography, all cases in that geography 

will make up the observed count, as 

opposed to those strictly within the circle. 

SaTScan will output the mid-point of the 

cluster and the radius, so a circle could be 

drawn on a map, but the most accurate 

depiction of the cluster would be the 

outline of the geographies involved in the 

cluster.  

Scan areas with high or low rates Using high rates searches for 

clusters that are characterised by a 

high number of events relative to 

the number expected (as opposed to 

exploring areas with a low number 

of events relative to the number 

expected) 

High rates To identify areas with unusually high 

suicide rates. 
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Time aggregation level Models can be specified at the day, 

month, or year level. For example, a 

day-level model explores the 

number of cases in each area each 

day. Clusters emerging from a day-

level model have a minimum 

duration of one day and identify 

precise temporal clusters in day 

units. Clusters emerging from a 

month-level model have a 

minimum size of one month and 

identify clusters in units of months. 

Month  Models were initially tested at the day level 

(e.g., using the number of cases in each 

SA2 each day). However, no significant 

clusters were found across numerous 

models explored. Month-level models 

remained as our best option to detect 

clusters in real-time. 

Maximum cluster radius A limit can be placed on the size of 

the circle of identifiable clusters.  

20km, 50km, 100km We explored three maximum cluster radius 

options, for one, to better understand the 

impact on cluster statistics and second, to 

use a variety of models to converge on 

probable clusters. We also explored a 

200km maximum, but this did not identify 

an additional cluster. 

Maximum cluster duration A limit can be placed on the 

duration of identifiable clusters.  

1 month, 3 months, 6 months, 12 

months 

As above, we applied a variety of 

maximum cluster lengths to understand the 

statistical impact and converge on likely 

clusters. 
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Results - Reference Cluster Detection 

Table 2 summarises the details of the six significant clusters detected in the all-ages analysis. 

Table 3 contains details of the three significant clusters detected in the under-25 analysis. 

Both tables report the geographic unit of analysis, cluster duration (in months), the number of 

composite geographical units in the cluster (e.g., the number of MBs that make up the 

cluster), basic cluster metrics (observed count, expected count and p value), the estimated 

population living in the area in which the cluster was detected, and the number of models that 

detected the cluster as significant (i.e., out of 36 run).  

 

Both tables demonstrate that the scan statistic can be used to identify significant clusters in a 

jurisdiction like Victoria (~700 suicides per year). Discussions with CCV and the Suicide 

Prevention and Response Office about these cluster locations on the 8th and 10th of July 2022 

reinforced the viability of our approach, with most significant clusters mapping to the times 

and places they were concerned about.  
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Table 2: Possible clusters for all age groups 

Cluster  

Geography 

Level 

Duration of 

Cluster 

(Months) 

Number of 

Areas in 

Cluster Observed Expected p value 

Population 

of Cluster 

Area 

Number of 

Models 

Identifying 

Cluster 

1 MB 4 121 8 0.27 0.04 7800 6 

2 MB 10 34 8 0.23 0.02 2700 3 

3 MB 1 7 nr 0 >0.01 >150 12 

4 SA1 4 31 9 0.47 0.08 13500 6 

5 SA1 9 16 9 0.43 0.04 5600 3 

6 SA2 10 3 17 3.44 0.07 39500 3 

 

Note: nr = not reported due to small cell sizes. Where this occurs, the p-value and the population size have been rounded up to preserve the anonymity of the cluster’s 

location. 
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Table 3: Possible clusters for all people aged < 25 years 

Cluster 

Name 

(Central 

SA2 Name) 

Geography 

Level 

Duration of 

Cluster 

(Months) 

Number of 

Areas in 

Cluster Observed Expected p value 

Population 

of Cluster 

Area 

Number of 

Models 

Identifying 

Cluster 

1 SA1 1 18 nr 0.01 >0.10 1850 3 

2 SA2 1 4 nr 0.04 >0.01 10200 8 

3 SA2 2 6 5 0.11 0.01 14950 6 

 

Note: nr = not reported due to small cell sizes. Where this occurs, the p-value and the population size have been rounded up to preserve the anonymity of the cluster’s 

location.  
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Stage 5: Simulation of Real-time Cluster Detection 

Having established that the scan statistic could detect meaningful space-time suicide clusters 

in Victoria, we next assessed our ability to identify a cluster in real time. This involved a 

computationally expensive retrospective analysis, in which we ran the scan statistic over 

progressively more recent windows of data. By imagining a situation where (a) the CCV 

would provide us with a new month of data every month and (b) where we would execute the 

scan statistic upon receiving that data, we could discover the month of data that lead to the 

statistical recognition of a given cluster (i.e., the cluster detection date). By comparing the 

duration of an identified cluster (i.e., when the cluster finished) to the cluster detection date, 

we could assess the gap and estimate how quickly we could have identified the cluster if 

operating as an active suicide surveillance system. In other words, could we detect the cluster 

months after it finished? As it finished? Or when it was an earlier form of an even bigger 

cluster? 

 

Method – Simulation of Real-time Cluster Detection 

Our approach was to run a series of models on moving two-year windows of suicide data, 

adding one new month while dropping the oldest month with each model run. At the 

conclusion of modelling, we collated information about all significant clusters found, 

especially noting the window of data that first revealed each cluster (significant clusters were 

usually found repeatedly with sequential models). As mentioned, this allowed us to estimate 

when clusters would have been identified if the CCV had provided us with a new month of 

data, every month. Noting that SaTScan calculates expected counts using the base rate of 

events across the entire data set, it was important to provide SaTScan with enough data to 

compute valid expected counts and provide relatively up-to-date base rate information to 
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compute relevant expected counts. Two-year windows (containing around 1300 suicide 

events each) were deemed sufficient to meet both requirements.  

 

To clarify the simulation approach, the first window modelled was January 2015 to 

December 2016 (inclusive, i.e., 24 months of data), with the following model assessing 

suicide counts between February 2015 and January 2017. This process was repeated until the 

final model examined suicide counts between July 2020 and June 2022. If, for example, the 

same cluster was significant in the May 2020 - April 2022 model, the June 2020 - May 2022 

model and the July 2020 - June 2022 model, we determined that, hypothetically, we would 

have first identified that cluster at roughly the end of April 2022. For simulated models, we 

applied the same parameters as found in Table 1 except we fixed the maximum radius to 

100km and the maximum duration to 12 months. This adjustment was made to minimise 

computing time (given the very large number of models being run) while capturing as many 

clusters as possible. The simulation was performed once again at the MB, SA2 and SA2 

levels, separated for people of all ages and for people under 25. In total, this resulted in the 

execution and analysis of 402 models (201 for each age group). 

 

Results – Simulation of Real-time Cluster Detection 

All-ages simulation. Table 4 summarises the details of earliest detection of each significant 

cluster identified across the all-ages simulation. In total, 16 distinct significant clusters were 

identified, although on occasions, technically distinct clusters could be practically mapped to 

a single cluster (e.g., Cluster 3). The duplication occurred because separate MB, SA1 and 

SA2 models homed in on the same set of suicides or because a near-by space-time window 

also turned out to be a significant cluster. In either case, a slightly different cluster boundary 

was drawn even if it was capturing essentially the same group of events.  



 18 

Table 4: Significant clusters identified in the all-ages simulation. Functionally identical clusters have been grouped (e.g., 3a - 3e), even if they 

have marginally distinct cluster dimensions. 

Cluster Geography 

Level 

Duration of 

Cluster 

(Months) 

Number of 

Areas in 

Cluster 

Observed Expected p value Population of 

Cluster Area 

1a SA2 7 2 11 1.746 0.094 26200 

2a SA2 11 3 17 4.156 0.097 40000 

3a MB 10 34 8 0.257 0.006 2700 

3b MB 9 101 9 0.497 0.043 6000 

3c MB 7 101 8 0.395 0.1 6000 

3d SA1 9 16 9 0.475 0.015 6000 

3e SA1 7 16 8 0.367 0.023 6000 

4a SA2 8 3 15 3.016 0.04 40000 

4b SA2 10 3 17 3.825 0.041 40000 

4c SA2 9 4 17 3.845 0.033 44000 

5a MB 8 220 10 0.749 0.086 10000 

5b SA1 8 27 10 0.859 0.089 11500 

6a MB 1 7 nr 0.001 >0.01 >150 

7a SA2 5 6 14 2.825 0.08 58600 

8a MB 8 2 nr 0.003 >0.05 >50 

8b SA1 8 1 nr 0.007 >0.10 >100 

 

Note: nr = not reported due to small cell sizes. Where this occurs, the p-value and the population size have been rounded up to preserve the anonymity of the cluster’s 

location.  
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Figures 1 and 2 display the detection timeline for, respectively, Cluster 3a and Cluster 7a. 

These figures indicate (a) the suicide history within the geographical area of the cluster since 

2015; (b) the specific two-year window of data modelled within which the cluster was 

detected (green arrow); (c) the duration of the cluster identified (blue arrow); and (d) when 

the cluster would have (theoretically) been identified given provision of suicide data every 

month.  

 

Figure 1 indicates that Cluster 3a would have been in identified at the end of month 59, 

immediately following provision of that month’s data. Figure 1 also indicates that before the 

beginning of the cluster, suicide was uncommon in the area, with no events recorded since 

the beginning of 2015. While the cluster appeared to be detected when it was effectively 

over, two further deaths occurred later in the timeline. Speculatively, given timely 

identification of this cluster, there may have been a chance for intervention in the area, 

although whether these two deaths could have been averted is an open question. Figure 2 

implies that the Cluster 7a would have been identified at the end of month 85, once again 

immediately following provision of that month’s data. While the area exhibits a history of 

suicide, the identified cluster appears to capture a relatively large group of deaths. Moreover, 

two further deaths occurred shortly after simulated identification of the cluster, once again 

highlighting the potential for intervention. Figures 1 and 2 both imply that given a two-year 

window of Victorian Suicide data, and monthly data updates, significant clusters could be 

detected as soon as they recognisably become a cluster (within a month).  

 



 20 

 

Figure 1. Timeline of cluster detection and suicide events for all-ages cluster 3a (detected 

with an MB model) 
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Figure 2. Timeline of cluster detection and suicide events for all-ages cluster 7a (detected 

with an SA2 model). 
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Under-25 simulation. Table 5 summarises the details of the earliest detection of each 

significant cluster identified across the under-25 simulation. In total, eight distinct significant 

clusters were identified, with duplication again observed in some technically distinct clusters 

(e.g., Cluster 4). Cluster detection timelines presented in Figures 3 and 4, respectively for 

Cluster 4c and Cluster 3c. Figure 3 demonstrates little history of suicide inside the cluster 

boundary until the cluster itself occurred between months 84 and 85. Our modelling indicates 

that this cluster would have been identified following supply of month 85’s data. Likewise, 

Figure 4 shows little suicide history within the cluster boundary until four deaths occurred in 

one month (month 59). Our modelling indicates that this cluster would have been identified 

following supply of data at the end of that month.
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Table 5: Significant clusters identified in the under-25 simulation. Functionally identical clusters have been grouped (e.g., 3a – 3c), even if they 

have marginally distinct cluster dimensions. 

Cluster Geography 

Level 

Duration of 

Cluster 

(Months) 

Number of 

Areas in 

Cluster 

Observed Expected p value Population of 

Cluster Area 

1a SA1 12 100 8 0.536 0.083 1200 

2a SA1 4 6 nr 0.009 >0.01 >600 

3a MB 1 82 nr 0.006 >0.01 >1500 

3b SA1 1 18 nr 0.008 >0.01 >2000 

3c SA2 1 4 nr 0.045 >0.01 >10500 

4a SA1 3 156 6 0.211 0.081 16200 

4b SA1 5 156 7 0.338 0.093 16200 

4c SA2 2 6 5 0.131 0.008 15000 

 

Note: nr = not reported due to small cell sizes. Where this occurs, the p-value and the population size have been rounded up to preserve the anonymity of the cluster’s 

location.  
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Figure 3. Timeline of cluster detection and suicide events for Cluster 4c (detected with an 

SA2 model).  
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Figure 4. Timeline of cluster detection and suicide events for Cluster 3c (detected with an 

SA2 model).
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Discussion 

In this project, we tested the feasibility of a real-time suicide cluster monitoring system using 

real-time suicide data collated and provided by CCV. The initial steps included obtaining 

ethical approval, approval to access the VSR data and procuring a secure data platform for 

data storage and use, all of which were accomplished by late 2021. In the later stages of 2021 

and throughout 2022 we carried out extensive modelling of the historical data available to us. 

Through this process, we refined our analysis, conducted finalised space-time cluster 

detection analyses (identifying a series of reference clusters) and simulated real-time cluster 

detection analysis.  

 

The major findings to emerge from this research are that (a) the scan statistic can be applied 

to VSR data to retrospectively detect significant suicide clusters in Victoria and (b) that 

monthly provision of suicide data does, in principle, allow us to detect the presence of suicide 

clusters in near real time. As our illustration of the cluster timeline suggests (Figures 1, 2, 3), 

this real-time identification of clusters creates new opportunities for community-level 

interventions to prevent future suicide in the area (demonstrable in our simulation), 

potentially reducing the growth of clusters.  

 

The implication of these findings is that it is feasible to combine the VSR with the scan 

statistic to develop a real-time suicide cluster detection system. As noted in the introduction, 

such a system has two advantages over existing approaches to detect clusters. Most 

obviously, it is in real time (unlike all previous studies we have been involved in), but equally 

importantly, it overcomes the failure to detect clusters that cross large geographic boundaries 

(e.g., local government areas). This approach therefore solves both problems that CCV 

identified at the outset of the project.  
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Future directions 

Technical refinement of cluster detection. With more funding and time, further background 

testing of SaTScan-based modelling techniques could take place (or alternative space-time 

cluster detection approaches). The following possibilities exist for fine tuning the cluster 

detection analysis: 

• The use of ellipse-shaped windows (instead of the circular window setting) could 

allow improved cluster detection in coastal regions, or along other natural 

boundaries, but this is yet to be tested. 

• The use of the 2021 census to provide more up-to-date population estimates, and thus 

improve expected suicide count accuracy for the analysis of more current suicide 

data. Annual population estimates at area levels, if obtainable, would be even better. 

• Exploration of “area-free” cluster detection methods. One of the available SaTScan 

methods, the space-time permutation model, detects clusters without the need to 

aggregate events by area (e.g., by SA2). The ability to use such an approach (or an 

alternative) would allow detection of clusters without any boundary constraints. We 

were able to briefly test the space-time permutation model, but it did not reveal 

significant clusters. Nevertheless, further investigation of this and alternative area-

free methods could lead to a superior cluster-detection approach. This approach has 

been used in Wales13 and we are aware of this approach being used more recently in 

Taiwan. 

• Simulating cluster detection with bi-monthly provision of data. SaTScan has few 

temporal granularity options (day, month, year-level options), of which we found 

month-level analysis best suited to suicide cluster detection. However, the scan 

statistic could still be meaningfully run with a fortnightly data update (or even more 

frequently). Any deaths in the early stages of the month would be accounted for, 
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which could facilitate even earlier cluster detection (e.g., a cluster might be detected 

halfway through the month instead of at the end). A bi-monthly simulation could be 

conducted to assess the likely benefits. 

 

Development and implementation of a suicide cluster surveillance system in Victoria. 

Given the feasibility of our approach for detecting suicide clusters in real-time using the 

VSR, and given that this project came out of CCV’s desire to have improved monitoring of 

suicide clusters, the next logical step is to begin working with them and the Suicide 

Prevention and Response Office to gauge interest in implementing the system. If they were 

interested in using this system for ongoing monitoring, then we see several avenues for future 

collaboration. These are: 

• Negotiating access to the VSR for monitoring. Our current agreement with CCV is to 

use the data for the purpose of this research project. Therefore, a new agreement 

would need to be negotiated if the data were to be used for ongoing monitoring.  

• Further developing a suite of reports for CCV, the Suicide Prevention and Response 

Office and other end-users. The outputs we have developed (the timeseries plots in 

Figures 1-4 and interactive maps that are not reported here) are a good starting point 

but likely require further refinement. We could lead a project where we co-design the 

outputs with data users, implement them so that the monitoring system automatically 

generates these outputs, and then iteratively refine the reports until users are satisfied. 

• Reaching agreement about how the reports should be disseminated. A best-practice 

approach would be for the University of Melbourne to upload the interactive map and 

monthly reports to a secure portal. From there, authorised users could log-in to the 

portal to access reports. Access would be controlled, so for instance, if an end-user 



 29 

left their role, access could be revoked, and similarly a new authorised user could be 

given access.  

 

Developing a national suicide cluster monitoring system: The feasibility of detecting 

suicide clusters in Victoria opens up the possibility of extending the system to other states 

and territories in Australia. As each state and territory now has their own real-time suicide 

register, it would theoretically be possible to apply the scan statistic with the settings we have 

used to these if the registers contain the minimum data needed for such analyses. A broader 

question concerns the use of other data – specifically data on self-harm – for cluster 

monitoring. Ambulance data and hospital presentation data could be used for this. For this to 

be successful, we would need to repeat the analyses done here to identify the right set of 

parameter settings for these data. It is also an open question as to whether it is better to 

combine all the data into a single dataset for analysis or develop separate systems for suicide 

and self-harm (and potentially one system for ambulance data and another for hospital 

presentation data). We would need to undertake research to resolve these important issues, 

but we also need to consult with end users to better understand what is most useful for them.  

 

Summary 

This work arose because CCV, a data-savvy court that uses sophisticated methods to monitor 

suicides, recognised they could not adequately monitor suicide clusters using their existing 

methods. This feasibility study therefore sought to understand if statistical/epidemiological 

cluster detection methods using real-time data with precise geocoordinates could be used to 

monitor the emergence of suicide clusters. Our findings show that this approach is highly 

feasible. Using data from the VSR, we have been able to use the scan statistic to 

retrospectively identify suicide clusters that largely match areas CCV and the Suicide 
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Prevention and Response Office were concerned about. We have also been able to apply 

these settings to near real-time data to simulate how suicide cluster monitoring would be done 

in practice; that is, using a rolling 2-year window of data for monitoring. We were able to 

identify a similar set of clusters with this data and produce outputs showing the timing and 

location of these clusters. These encouraging findings provide an ideal platform from which 

to consider what a suicide cluster monitoring system might look like, if implemented, in 

Victoria, and potentially across Australia.  
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