Deaths data are a vital measure of a population’s health, and provides information on patterns of diseases that cause death, by population groups and over time. Examining death patterns can help explain differences and changes in health status, evaluate health strategies, and guide planning and policy-making.

This web report presents updated data to 2018 on deaths, causes of death and life expectancy in Australia.

Findings from this report:
- In 2018, there were 158,493 deaths registered in Australia
- In 2018, there were 26,700 potentially avoidable deaths
- Over the period 1907 to 2018, the age-standardised death rate fell by 75%
- In 2018, child deaths rates (ages 0-4 years) were 31% lower than child death rates in 2008 (from 105 to 72 per 100,000)
Summary

Why are deaths data important?
Looking at how many people die and what caused their death can provide vital information about the health of a population. Examining patterns and trends in deaths can help explain differences and changes in the health of a population, contribute to the evaluation of health strategies and interventions, and guide planning and policy-making.

Cause-specific death statistics provide insight into the events that contribute to deaths and to the burden of disease. Causes of death are documented on a death certificate and can be classified into disease groups. The coding of death certificates produces an underlying cause and, for many deaths, one or more associated causes of death.

Underlying, associated, and multiple causes of death
Death statistics are often based on the underlying cause of death only—that is, the disease or injury that initiated the train of events leading directly to death, or the circumstances of the accident or violence that produced the fatal injury. Analysis of the underlying cause of death is important because it points to where interventions can be targeted.

Leading cause of death statistics presented here are based on the underlying cause of death.

Associated causes of death are all causes that contributed to the death, other than the underlying cause of death. They include the immediate (or direct) cause (the condition that occurred immediately before death or closest to the time of death), any intervening causes, and conditions which contributed to the death but were not related to the disease or condition causing the death. Analyses using associated causes of death offer insight into the disease processes occurring at the end of life or, for injury causes of death, the nature of the injury.

Multiple causes of death statistics are based on both the underlying and associated causes of death.

Changes in the pattern of causes of death may reflect changes in behaviours, exposures to disease or injury, social and environmental circumstances, the effects of medical and technological advances, as well as data coding practices.

Year of occurrence and year of registration
Trends may be presented by year of occurrence of death or year of registration of death.

Using year of occurrence of death is common when the exact time period of the death is important (for example, seasonal deaths) however the latest data available underestimates the occurrence of recent deaths due to a lag in registration.

For this reason, year of registration of death is often used to allow the latest year of data to be compared to previous years.

In both cases the latest year of data are coded with preliminary causes of death information and may underestimate causes of death that are usually certified by a coroner (for example, external causes of death including suicide).

Unless otherwise specified, deaths statistics presented here are based on year of registration of death.

For more information on how deaths are registered, coded and updated, see About deaths data.
Age at death

In 2018, there were 158,493 deaths registered in Australia. The majority of deaths in Australia, like other developed countries, occur among older people. Sixty-six per cent of deaths registered in Australia in 2018 were among people aged 75 or over (59% for males and 73% for females). The median age at death was 78 years for males and 84 years for females (Table S2.1).

Figure 2.1: Deaths by sex and age group, 2018

Source: AIHW National Mortality Database (Table S2.1).

Child deaths

Deaths in early childhood have reduced substantially over the past 100 years. In 1907, child deaths (aged 0–4 years) accounted for 26% of all deaths compared to 0.7% in 2018.

Child death rates presented here are calculated as the number of deaths among young children (aged 0–4) divided by the population of the same age and expressed as per 100,000 population.

In 2018, there were 72 child deaths per 100,000 population—31% lower than a decade earlier (2008) and 97% lower than in 1907 when recording began. The death rate was higher for boys than girls (81 and 63 deaths per 100,000 population respectively).

The drop in child deaths in Australia mostly reflects a decline in infant deaths (aged less than 1), which is linked to:

- improved access to and quality of neonatal health care
- increased community awareness of risk factors for infant and child deaths
- improved sanitation and hygiene
- reductions in vaccine-preventable diseases through universal immunisation programs.

Figure 2.2: Child (aged 0–4) death rates by sex, 1907-2018
Other measures of deaths in early childhood and infancy are also commonly used to describe the health status of a population:

- **Infant mortality rate** is defined as the number of deaths of infants (aged less than 1) divided by the number of live births (and usually expressed per 1,000 live births). For more information on infant deaths, see Australia’s Children.
- **Perinatal deaths** are deaths of babies who die before birth (stillbirth or fetal death) or within the first 28 days of life (neonatal deaths). For more information on perinatal deaths, see Mothers and babies.
- **Under-five death rates** are defined as the number of child (aged 0-4) deaths divided by the number of live births, rather than dividing by the population aged 0-4, and expressed per 1,000 live births. For more information on under-five deaths, see World Health Organization.

Potential years of life lost (PYLLs)

Premature deaths can be summarised in terms of potential years of life lost (PYLLs). This measure considers only deaths that occur before a specified arbitrary age. For example, if dying before the age of 75 is considered premature, then a person dying at age 40 would have lost 35 potential years of life.

Using the age of 75 as the cut-off, there were 871,807 PYLLs in Australia in 2018. This is a little over half (55%) the number in 1907 when there were 1,576,383 PYLLs. Expressed another way, in 1907 there were 382 PYLLs per 1,000 population and in 2018 this figure was 37 PYLLs per 1,000 population; a decrease of 90%.

Males are more likely than females to experience premature death, however, the difference between the sexes is narrowing. In 1978, there were 116 PYLLs per 1,000 males compared to 63 PYLLs per 1,000 females: a difference of 53 PYLL per 1,000. This gap decreased to 32 PYLL in 1998 (71 PYLLs per 1,000 males and 39 PYLLs per 1,000 females) and 19 PYLL in 2018 (47 PYLLs per 1,000 males and 28 PYLLs per 1,000 females).
Potentially avoidable deaths are deaths among people younger than 75 that are potentially avoidable within the present health care system. They include deaths from conditions that are potentially preventable through individualised care and/or treatable through existing primary or hospital care.

In 2018, there were 26,700 potentially avoidable deaths: half (49%) of all deaths for people aged less than 75. Of these deaths, 64% were male and 36% were female.

Potentially avoidable death rates fell by 45% between 1998 and 2018 (from 183 to 100 deaths per 100,000 population). Rates fell by 46% among males (from 240 to 130 deaths per 100,000 males) and by 44% among females (from 127 to 72 per 100,000 females).

Figure 2.4: Age-standardised death rates of potentially avoidable deaths among people aged less than 75 by sex, 1998-2018

![Age-standardised death rates of potentially avoidable deaths among people aged less than 75 by sex, 1998-2018](image)

Source: AIHW National Mortality Database (Table S2.4).

Potentially avoidable deaths are classified using nationally agreed definitions based on cause of death for people aged less than 75. Historical data may differ from previous reports as the nationally agreed revisions to the definition of potentially avoidable deaths in 2020 have been applied. Note that the ICD-10 codes for colorectal cancer C18-C20, C26.0 have been used for this measure.

Data on potentially avoidable deaths by small geographical areas are available as an indicator within the Australia’s health performance framework, in report *Life expectancy and potentially avoidable deaths* and the AIHW *Mortality Over Regions and Time (MORT) books.*

Last updated 15/07/2020 v28.0
© Australian Institute of Health and Welfare 2020 [Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)]
Leading causes of death

Leading underlying causes of death by sex

Coronary heart disease is the leading underlying cause of death in Australia, followed by dementia including Alzheimer disease. Cerebrovascular disease (which includes stroke), lung cancer and chronic obstructive pulmonary disease (COPD) make up the top 5 leading underlying causes of death in Australia in 2018, for males and females of all ages combined.

Figure 3.1 below shows the number of male and female deaths contributing to the top 5 causes. The leading cause of death for males was coronary heart disease, accounting for 10,269 (13%) deaths. Dementia including Alzheimer disease was the leading cause of death for females, accounting for 8,973 (12%) deaths, followed by coronary heart disease (7,264; 10% of deaths). Cerebrovascular disease (which includes stroke), lung cancer and chronic obstructive pulmonary disease (COPD) make up the top 5 leading underlying causes of death in Australia in 2018 for males and females of all ages combined. For more leading causes of death by sex see Table S3.1.

Figure 3.1: Leading underlying causes of death, by sex, 2018

<table>
<thead>
<tr>
<th>Cause</th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Coronary heart disease</td>
<td>10,269</td>
<td>7,264</td>
</tr>
<tr>
<td>2 Dementia including Alzheimer disease</td>
<td>4,990</td>
<td>8,973</td>
</tr>
<tr>
<td>3 Cerebrovascular disease</td>
<td>4,164</td>
<td>5,808</td>
</tr>
<tr>
<td>4 Lung cancer</td>
<td>5,000</td>
<td>3,586</td>
</tr>
<tr>
<td>5 Chronic obstructive pulmonary disease</td>
<td>3,783</td>
<td>3,330</td>
</tr>
</tbody>
</table>

Note: Leading causes of death are based on underlying causes of death and classified using an AIHW-modified version of Becker et al. 2006.

Source: AIHW National Mortality Database (Table S3.1).

Leading underlying causes of death by age

As well as differences by sex, the leading causes of death also vary by age. Chronic diseases feature more prominently among people aged 45 and over, while the leading causes of death among people aged 1-44 are external causes, such as accidents and suicides (Figure 3.2).

Among infants, perinatal and congenital conditions caused the most (80%) deaths.

Land transport accidents were the most common cause of death among children aged 1-14 (11%). Suicide was the leading cause of death among people aged 15-24 (37%), followed by land transport accidents (21%). For people aged 25-44, it was also suicide (22%), followed by accidental poisoning (13%).

Coronary heart disease was the leading cause of death for people aged 45-64, followed by lung cancer. For people aged 65-74, it was lung cancer followed by coronary heart disease. Dementia including Alzheimer disease was the second leading cause of death among people aged 75 and older, behind coronary heart disease.

Figure 3.2: Leading causes of death, by age group, 2016-2018
Classifying causes of death

Leading underlying causes of death are determined by grouping specific causes of death and counting the number of deaths assigned to each cause group. Over 14,000 specific causes of illness, injury and death are presented in the International Statistical Classification of Diseases and Related Health Problems, 10th Revision (ICD-10). These causes can be grouped in a way that is meaningful for public health purposes.

A common grouping is by ICD chapters which are broad categories arranged according to the type of disease, the body system affected by the disease or the circumstances causing death. Each chapter is further divided into blocks of related diseases. Australian cause of death data by ICD-10 chapters and selected causes of death are published in the AIHW General Record of Incidence of Mortality (GRIM) books.

For leading underlying cause of death analysis, information needs to be more specific than ICD chapters and blocks. There is no standard method for grouping causes, however, the AIHW follows the recommendations of the World Health Organization (WHO) (Becker et al. 2006) with minor modifications to suit the Australian context. This grouping is a mix of ICD chapters, blocks and specific diseases to maximise information, separate out ill-defined causes and highlight health priority areas.

The leading underlying causes of death presented here are classified using an AIHW-modified version of Becker et al. [1].

Reference

Notes:

1. ‘Other ill-defined causes’ include the following codes: Symptoms, signs and abnormal clinical and laboratory findings, not elsewhere classified (ICD-10 codes R00-R99, excluding R95: Sudden infant death syndrome (SIDS)); Cardiac arrest, unspecified (I46.9); Respiratory failure of newborn (P28.5); Respiratory failure, unspecified (J96.9). AIHW General Record of Incidence of Mortality (GRIM) books are available for selected leading causes of death.

2. There were no suicide deaths in children under 5. The number of deaths of children attributed to suicide can be influenced by coronial reporting practices, see ABS 3303.0 – Causes of Death, Australia, 2011 (Explanatory Notes 92–95) for further information.

Source: AIHW National Mortality Database (Table S3.2).
Trends in deaths

Trends by sex
There has been a long and continuing decline in death rates in Australia. Over the period 1907 to 2018, the age-standardised death rate for males fell by 73% and by 77% for females.

Death rates have historically been higher for males than for females; however, the gap is closing over time. The difference between male and female age-standardised death rates was largest in 1968, when the rate difference was 642 deaths per 100,000 population, and narrowest in 2018 (176 deaths per 100,000 population).

The reduction in rate difference between male and female rates since 1968 has largely been driven by the reduction in deaths due to circulatory diseases. This was influenced by several factors, including improvements in surgical techniques, hospital care, diagnosis and pharmaceuticals, as well as modifications to lifestyle factors such as smoking, diet and high blood pressure. See more on Mortality inequalities in Australia.

Figure 4.1: Age-standardised death rates, by sex, 1907-2018

Source: AIHW National Mortality Database (Table S4.1).

Trends by cause of death
The decline in deaths in the first half of the last century was associated with factors such as control of infectious disease and better hygiene and nutrition. The decline in the later years was associated with improvements in road safety measures, falls in smoking rates, and improvements in prevention, detection and treatment of disease such as cardiovascular disease and other chronic diseases. See more on Mortality over the twentieth century in Australia.

Circulatory diseases have consistently been a leading cause of death for Australians over the last century, but death rates have been steadily declining. Deaths from circulatory diseases peaked in 1968 at 830 deaths per 100,000 population (age-standardised rate), and have since dropped to 129 deaths per 100,000 population in 2018. Cancer (all neoplasm) deaths, after adjusting for differences in age structure, peaked in 1985 (217 deaths per 100,000 population) and have gently declined to 157 deaths per 100,000 population in 2018.

Age-standardised rates of deaths due to respiratory diseases and injury and poisoning declined over the last century.

Figure 4.2: Age-standardised death rates, by broad cause of death, 1907-2018
Source: AIHW National Mortality Database (Table S4.2).

Last updated 13/07/2020 v11.0
© Australian Institute of Health and Welfare 2020 [CD]
Multiple causes of death

Deaths statistics are usually compiled using the underlying cause of death only. However, in most cases, more than one disease contributes to death.

The **underlying cause of death** is the disease or injury that initiated the train of events leading directly to death, or the circumstances of the accident or violence that produced the fatal injury. Deaths are referred to here as ‘due to’ the underlying cause of death.

Associated causes of death are all causes listed on the death certificate, other than the underlying cause of death. They include the immediate cause, any intervening causes, and conditions which contributed to the death but were not related to the disease or condition causing the death.

Multiple causes of death are defined here as all causes listed on the death certificate. This includes the underlying cause of death and all associated causes of death. This information is useful for describing the role of all diseases involved in deaths especially for chronic diseases, where there is usually more than one disease contributing to the death.

Examining multiple causes of death offers better insights into the disease processes occurring at the end of life. This in turn can be useful for developing better prevention and treatment policies and practices, refining disease surveillance activities, guiding research investment and enhancing burden of disease estimates.

Natural causes of death

Of the 158,493 deaths in Australia in 2018, 92% were due to natural causes. These are deaths that were not due to external causes such as accidents, injury and poisoning, or due to ill-defined causes.

In 2018, 80% of natural deaths had more than 1 cause and, on average, 3.3 diseases or conditions were recorded on the death certificate (Table S5.1). Factors that may affect the number of causes of death recorded include the person's age, the underlying cause of death, coding changes and variations in certification practices. See more on Multiple causes of death in Australia.

Selected chronic disease causes of death

Australians who die of chronic disease often have more than 1 cause of death recorded on their death certificate (Figure 5.1). For example, deaths due to coronary heart disease had 3.7 causes of death recorded on average, deaths due to asthma had 4.0 and deaths due to diabetes had 5.2 (Table S5.2).

Figure 5.1: Commonly reported associated causes of death for selected chronic diseases as the underlying cause, 2016-2018

<table>
<thead>
<tr>
<th>Chronic disease</th>
<th>Associated causes of death for:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coronary heart disease was an associated cause of death for:</td>
<td>43% of deaths due to diabetes</td>
</tr>
<tr>
<td>Hypertensive disease was an associated cause of death for:</td>
<td>33% of deaths due to diabetes</td>
</tr>
</tbody>
</table>
Influenza and pneumonia was an associated cause of death for:

- 29% of deaths due to asthma
- 25% of deaths due to chronic obstructive pulmonary disease
- 18% of deaths due to dementia including Alzheimer disease

Kidney failure was an associated cause of death for:

- 39% of deaths due to diabetes
- 15% of deaths due to coronary heart disease
- 12% of deaths due to prostate cancer

Source: AIHW National Mortality Database; (Table S5.2).

Underlying versus associated causes of death

Chronic diseases that are more likely to be reported as the underlying cause of death rather than as an associated cause of death include prostate, breast, colorectal (bowel), liver and lung cancers (Figure 5.2).

Chronic diseases that are more likely to be reported as associated causes of death include chronic and unspecified kidney failure, diabetes, asthma, COPD, and dementia including Alzheimer disease.

When deaths are reported by the underlying cause of death only, the involvement of certain diseases in overall mortality may be underestimated. This is particularly evident for chronic and unspecified kidney failure, diabetes, asthma and COPD.

Figure 5.2: Selected chronic diseases as underlying and associated causes of death, 2016-2018 (per cent).

![Figure 5.2: Selected chronic diseases as underlying and associated causes of death, 2016-2018 (per cent).](chart)

Note: Underlying refers to deaths with the disease recorded as the underlying cause of death, regardless of whether the disease was also recorded as an associated cause of death. Associated refers to deaths with the disease recorded only as an associated cause of death.

Source: AIHW National Mortality Database; (Table S5.3).

Last updated 23/07/2020 v9.0
© Australian Institute of Health and Welfare 2020
Life expectancy

Life expectancy is the most commonly used measure to describe population health and reflects the overall mortality level of a population. Life expectancy measures how long, on average, a person is expected to live based on current age and sex-specific death rates. In summarising mortality patterns, life expectancy is often expressed as the number of years of life, from birth, a person is expected to live.

Trends in life expectancy

Life expectancy in Australia has improved dramatically for both sexes in the last century, particularly life expectancy at birth. Compared with their counterparts in 1881–1890, boys and girls born in 2016–2018 can expect to live around 34 years longer.

Figure 6.1: Life expectancy (years) at birth by sex, 1881–1890 to 2016–2018

Sources: ABS 2014a; ABS 2014b; ABS 2015; ABS 2016; ABS 2017; ABS 2018a; ABS 2019; (Table S6.1).

In Australia, a boy born in 2016–2018 can expect to live to the age of 80.7 years and a girl would be expected to live to 84.9 years compared to 47.2 and 50.8 years, respectively, in 1881–1890.

Life expectancy changes over the course of a person’s life because as they survive the periods of birth, childhood and adolescence, their chance of reaching older age increases. The life expectancy at different ages can be presented as the number of additional years a person can expect to live, or, their expected age at death in years.

Men aged 65 in 2016–2018 could expect to live another 19.9 years (an expected age at death of 84.9 years), and women aged 65 in 2016–2018 could expect to live another 22.6 years (an expected age at death of 87.6 years).

Table 6.1: Life expectancy (expected age at death in years) at different ages by sex, 1881–1890, 1960–1962 and 2016–2018

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (birth)</td>
<td>47.2</td>
<td>67.9</td>
<td>80.7</td>
<td>50.8</td>
<td>74.2</td>
<td>84.9</td>
</tr>
<tr>
<td>1</td>
<td>54.3</td>
<td>69.5</td>
<td>81.0</td>
<td>57.4</td>
<td>75.5</td>
<td>85.1</td>
</tr>
<tr>
<td>15</td>
<td>59.5</td>
<td>70.1</td>
<td>81.1</td>
<td>62.5</td>
<td>76.0</td>
<td>85.2</td>
</tr>
<tr>
<td>25</td>
<td>62.1</td>
<td>70.8</td>
<td>81.4</td>
<td>64.7</td>
<td>76.3</td>
<td>85.4</td>
</tr>
<tr>
<td>45</td>
<td>68.0</td>
<td>72.4</td>
<td>82.4</td>
<td>70.6</td>
<td>77.4</td>
<td>85.9</td>
</tr>
<tr>
<td>65</td>
<td>76.1</td>
<td>77.5</td>
<td>84.9</td>
<td>77.3</td>
<td>80.7</td>
<td>87.6</td>
</tr>
<tr>
<td>85</td>
<td>88.9</td>
<td>89.1</td>
<td>91.4</td>
<td>88.9</td>
<td>89.8</td>
<td>92.5</td>
</tr>
<tr>
<td>95</td>
<td>97.2</td>
<td>97.3</td>
<td>98.2</td>
<td>97.3</td>
<td>97.6</td>
<td>98.4</td>
</tr>
</tbody>
</table>
Life expectancy of Aboriginal and Torres Strait Islander people

For the Aboriginal and Torres Strait Islander population born in 2015–2017, life expectancy was estimated to be 8.6 years lower than that of the non-Indigenous population for males (71.6 years compared with 80.2) and 7.8 years for females (75.6 years compared with 83.4).

Between 2005–2007 and 2015–2017, Indigenous life expectancy at birth for boys increased by 4.4 years and by 2.7 years for girls. Over the same period, the difference between Indigenous and non-Indigenous life expectancy narrowed by 2.9 years for males and 1.9 years for females.

As shown in Table 6.2, this has resulted in a small decline in the life expectancy difference between Indigenous and non-Indigenous Australians.

Table 6.2: Life expectancy (years) at birth, by sex and Indigenous status, 2005-2007, 2010-2012 and 2015-2017

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Indigenous</td>
<td>67.2</td>
<td>69.1</td>
<td>71.6</td>
<td>72.9</td>
<td>73.7</td>
<td>75.6</td>
</tr>
<tr>
<td>Non-Indigenous</td>
<td>78.7</td>
<td>79.7</td>
<td>80.2</td>
<td>82.6</td>
<td>83.1</td>
<td>83.4</td>
</tr>
<tr>
<td>Difference</td>
<td>11.5</td>
<td>10.6</td>
<td>8.6</td>
<td>9.7</td>
<td>9.5</td>
<td>7.8</td>
</tr>
</tbody>
</table>

International comparisons of life expectancy

Australia enjoys one of the highest life expectancies in the world, at 82.8 years in 2018 for males and females at birth combined—ranked seventh among 37 Organisation for Economic Co-operation and Development (OECD) countries. The country with the highest life expectancy at birth for males was Switzerland (81.9 years), and for females was Japan (87.3 years).

Table 6.3: Life expectancy (years) at birth, top 10 OECD countries by sex, 2018

<table>
<thead>
<tr>
<th>Rank</th>
<th>Country</th>
<th>Males</th>
<th>Country</th>
<th>Females</th>
<th>Country</th>
<th>Persons</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Switzerland</td>
<td>81.9</td>
<td>Japan</td>
<td>87.3</td>
<td>Japan</td>
<td>84.2</td>
</tr>
<tr>
<td>2</td>
<td>Iceland</td>
<td>81.3</td>
<td>Spain</td>
<td>86.3</td>
<td>Switzerland</td>
<td>83.8</td>
</tr>
<tr>
<td>3</td>
<td>Italy</td>
<td>81.2</td>
<td>France</td>
<td>85.9</td>
<td>Spain</td>
<td>83.5</td>
</tr>
<tr>
<td>4</td>
<td>Japan</td>
<td>81.1</td>
<td>Korea</td>
<td>85.7</td>
<td>Italy</td>
<td>83.4</td>
</tr>
<tr>
<td>5</td>
<td>Norway</td>
<td>81.1</td>
<td>Switzerland</td>
<td>85.7</td>
<td>Iceland</td>
<td>82.9</td>
</tr>
<tr>
<td>6</td>
<td>Israel</td>
<td>80.9</td>
<td>Italy</td>
<td>85.6</td>
<td>Israel</td>
<td>82.9</td>
</tr>
<tr>
<td>7</td>
<td>Sweden</td>
<td>80.9</td>
<td>Australia</td>
<td>84.9</td>
<td>Australia</td>
<td>82.8</td>
</tr>
<tr>
<td>8</td>
<td>Australia</td>
<td>80.7</td>
<td>Israel</td>
<td>84.8</td>
<td>France</td>
<td>82.8</td>
</tr>
<tr>
<td>9</td>
<td>Spain</td>
<td>80.7</td>
<td>Luxembourg</td>
<td>84.6</td>
<td>Norway</td>
<td>82.8</td>
</tr>
<tr>
<td>10</td>
<td>Ireland</td>
<td>80.5</td>
<td>Finland</td>
<td>84.5</td>
<td>Korea</td>
<td>82.7</td>
</tr>
<tr>
<td>11</td>
<td>Netherlands</td>
<td>80.3</td>
<td>Iceland</td>
<td>84.5</td>
<td>Sweden</td>
<td>82.6</td>
</tr>
<tr>
<td>12</td>
<td>Luxembourg</td>
<td>80.1</td>
<td>Norway</td>
<td>84.5</td>
<td>Luxembourg</td>
<td>82.4</td>
</tr>
</tbody>
</table>

Source: OECD 2020 (Table S6.2).

Calculating life expectancy

Life expectancy is calculated using a statistical tool called a life table. A life table is generated from current age- and sex-specific death rates in a given population. The resulting values are used to estimate the likelihood of someone in a hypothetical population dying before their next birthday.

Calculating a person’s life expectancy is based on death patterns in the population, and assumes that current death rates will persist throughout that person’s life.
The Australian Bureau of Statistics (ABS) publishes life tables and calculates life expectancy for the Australian population and for some groups of the population. These measures are based on 3 years of data to reduce the effect of variations in death rates from year to year.

Life expectancy is related to the average age at death within a population and is inversely related to the population death rates at that time; that is, the lower the death rates the greater the life expectancy. It varies between population groups and over time. High life expectancy is often associated with low infant and child death rates, an ageing population and access to high quality health care.

Differences in life expectancy over time may be due to changes in the patterns of death due to certain conditions. For example, in 1922, infectious disease accounted for 15% of all deaths in Australia and on average people dying from these diseases were 27 years old. By comparison, in 2018, infectious diseases accounted for less than 2% of deaths and the average age at death for these diseases was 79 years. For more information on this and other causes, see the AIHW General Record of Incidence in Mortality (GRIM) books.

Health-adjusted life expectancy

Burden of disease measures include a measure of health-adjusted life expectancy which extends the concept of life expectancy by considering the time spent living with the health consequences of disease and injury. The measure reflects the average number of years of life expected in full health. For more information, see Burden of disease.

References

ABS 2013. Life Tables for Aboriginal and Torres Strait Islander Australians, 2010-2012. ABS cat. no. 3302.0.55.003. Canberra: ABS.

ABS 2014b. Life Tables, States, Territories and Australia, 2011-2013. ABS cat. no. 3302.0.55.001. Canberra: ABS.

ABS 2017. Life Tables, States, Territories and Australia, 2014-2016. ABS cat. no. 3302.0.55.001. Canberra: ABS.

ABS 2018b. Life Tables for Aboriginal and Torres Strait Islander Australians, 2015-2017. ABS cat. no. 3302.0.55.003. Canberra: ABS.

Abbreviations & symbols

ABS - Australian Bureau of Statistics
AIHW - Australian Institute of Health and Welfare
OECD - Organisation for Economic Co-operation and Development
WHO - World Health Organization
%
- per cent

Last updated 6/07/2020 v4.0
© Australian Institute of Health and Welfare 2020
Notes

Glossary

Data quality statement

For more information on the AIHW National Mortality Database see Deaths data at AIHW.

The data quality statements underpinning the AIHW National Mortality Database can be found in the following ABS publications:

- ABS quality declaration summary for Deaths, Australia (ABS cat. no. 3302.0)
- ABS quality declaration summary for Causes of death, Australia (ABS cat. no. 3303.0)

Last updated 1/07/2020 v3.0
© Australian Institute of Health and Welfare 2020
Data tables: Deaths in Australia
This web report and supplementary data tables present the most recent data on deaths, causes of death and life expectancy in Australia.
Download Data tables: Deaths in Australia. Format: XLSX 310Kb

National Healthcare Agreement: PI 16-Potentially avoidable deaths, 2020
Deaths from conditions that are potentially preventable through individualised care and/or treatable through existing primary or hospital care

Last updated 17/08/2017 v1.0
© Australian Institute of Health and Welfare 2020
Related material

Resources

General Record of Incidence of Mortality (GRIM) books
GRIM books are Excel workbooks that contain national level, historical and recent deaths data for specific causes of death. The tables present age- and sex-specific counts and rates by cause of death, along with other summary measures.

Mortality Over Regions and Time (MORT) books
MORT books are Excel workbooks that present summary deaths statistics and leading causes of death by sex for specific geographical areas.

Last updated 27/06/2018 v1.0
© Australian Institute of Health and Welfare 2020